Tensor Representations via Kernel Linearization for Action Recognition from 3D Skeletons (Extended Version)

نویسندگان

  • Piotr Koniusz
  • Anoop Cherian
  • Fatih Porikli
چکیده

In this paper, we explore tensor representations that can compactly capture higherorder relationships between skeleton joints for 3D action recognition. We first define RBF kernels on 3D joint sequences, which are then linearized to form kernel descriptors. The higher-order outer-products of these kernel descriptors form our tensor representations. We present two different kernels for action recognition, namely (i) a sequence compatibility kernel that captures the spatio-temporal compatibility of joints in one sequence against those in the other, and (ii) a dynamics compatibility kernel that explicitly models the action dynamics of a sequence. Tensors formed from these kernels are then used to train an SVM. We present experiments on several benchmark datasets and demonstrate state of the art results, substantiating the effectiveness of our representations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Representations via Kernel Linearization for Action Recognition from 3D Skeletons

In this paper, we explore tensor representations that can compactly capture higher-order relationships between skeleton joints for 3D action recognition. We first define RBF kernels on 3D joint sequences, which are then linearized to form kernel descriptors. The higher-order outer-products of these kernel descriptors form our tensor representations. We present two different kernels for action r...

متن کامل

Three Dimensional Texture Computation of Gray Level Co-occurrence Tensor in Hyperspectral Image Cubes

The traditional gray level co-occurrence matrix (GLCM) is in two-dimensional form. Because hyperspectral imagery in the feature space has the characteristic of volumetric data, it has a great potential for three-dimensional texture analysis. Previous studies have successfully extended traditional 2D GLCM to a 3D form (Gray Level Co-occurrence Matrix for Volumetric Data, GLCMVD) for extracting f...

متن کامل

Validation study of the extended theory of reasoned action questionnaire for drug abuse prevention in adolescents

The aim of this study was to design and assess the validity and reliability of the theory of reasoned action extended version questionnaire for drug abuse avoidance in Iranian male adolescents. Validity and reliability of a measure consisting of TRA and self efficacy construct for substance abuse avoidance was assessed by scientific methods. Cross-sectional data was collected via self-admini...

متن کامل

Representations and Matching Techniques for 3D Free-form Object and Face Recognition

The aim of visual recognition is to identify objects in a scene and estimate their pose. Object recognition from 2D images is sensitive to illumination, pose, clutter and occlusions. Object recognition from range data on the other hand does not suffer from these limitations. An important paradigm of recognition is model-based whereby 3D models of objects are constructed offline and saved in a d...

متن کامل

How to Combine Color and Shape Information for 3D Object Recognition: Kernels do the Trick

This paper presents a kernel method that allows to combine color and shape information for appearance-based object recognition. It doesn't require to define a new common representation, but use the power of kernels to combine different representations together in an effective manner. These results are achieved using results of statistical mechanics of spin glasses combined with Markov random fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016